
Processor Prototyping

Final Report

Yue Yin, William Wong

December 8, 2024



1 Executive Overview

This report explores performance comparisons among various processor designs: a single-

cycle processor, a pipelined processor without caches, a pipelined processor with caches, a

multicore processor designed for single-threaded programs, and a multicore processor de-

signed to handle dual-threaded programs. All tests are conducted using the mergesort.asm

assembly file for the single-threaded designs, while the dual-threaded multicore processor uses

the dual.mergesort.asm file, ensuring consistent functionality and computational objectives

across experiments. The metrics compared include estimated synthesis frequency, average

clocks per instruction (CPI) with and without caches, average latency per instruction, total

execution time with and without caches, the FPGA resources required for each design, and

the speedup.

The single-cycle processor, known for its simplicity, avoids hazards and forwarding, mak-

ing it resource-efficient but slower due to its inherently lower frequency and higher CPI.

Pipelined designs, while more complex, address hazards and implement forwarding to im-

prove performance, with the inclusion of caching further reducing latency and execution

times. The dual-threaded multicore design leverages parallelism with dual.mergesort.asm,

achieving even greater efficiency by processing multiple threads simultaneously. Data anal-

ysis, derived from synthesis and sweep reports generated via the Makefile and sweep script,

highlights the trade-offs between hardware complexity, resource usage, and performance.

While multicore processors require more resources, they deliver significant execution time

reductions, particularly for parallel workloads.

2 Processor Design

1



Figure 1: Pipeline Block Diagram

2



Figure 2: Pipeline Cache Block Diagram

The pipeline cache block diagram illustrates the integration of L1 instruction and data

caches with the pipelined CPU architecture. By using the dcif, cif and ccif interface, the

datapth, cache and main memory can communicate each other.

3



Figure 3: Multicore Block Diagram

In this diagram, we can see that we have a bus controller that is a combination of memory

controller and memory arbiter. We add the datomic siganl as well for the lr/sc to signal the

reservation register near the cache what it needs to do. the ccif interface will choose what

signal to choose from between two cores beased on the memory arbiter. Two cores will take

turns to give instruction to icache of two cores. As in normal memory controller, the data

signal will take priority than the instruction signal. To cut the critical path, we need to

latch the long siganls between the bus controller and the caches including dwait and dload.

By adding these signals, we need some wait states to wait for the part to get the real signal

to make everything correct.

4



Figure 4: Bus Controller FSM

This is the bus controller FSM, it basically has three paths. One is when the cache has

a miss and the core will first snoop from the other core. If the other core does have the

data then it will do a cache to cache transfer and the other core will store the data to main

memory for the memory coherence. If the other core doesn’t have the data then this core

will directly get data from main memory. The second path is when the cache needs to do a

write to the main memory like writing back all the dirty values to the main memory when

the program is done. The third path is when one core does a hit write so it needs to tell the

buscontroller and invalidate the other core block if it has.

5



(a) I-Cache Table

(b) I-Cache FSM

Figure 5: I-Cache Table and FSM Combined
6



Figure 6: D-Cache Table

This is the micro-architecture for 2-way dcache. The instruction is split into tag bits,

index bits, block offset and byte offset. We compare the input tag and the tag inside

dcache, it’s a hit if same. 7



Figure 7: D-Cache FSM

In this D-Cache FSM, we can observe that if the desired block cannot be found or is

marked as invalid, the system will either snoop to the other core or load the block from

main memory. For normal write operations or write-back to main memory, two steps

are taken since each block contains two words. It is important to note that in the

multicore configuration, hit counts are not necessary, simplifying the design and improving

efficiency. This FSM ensures coherent and efficient handling of memory operations within

the D-Cache system.

8



3 Results

Processors LAT SYN FREQ(MHz) CPI LATENCY(s/instr) TOTAL EXEC TIME(s) REGS LOGIC ELEM SPEEDUP

Single-Cycle 6 32.42 5.11 1.58e-7 8.52e-4 1293 3145 N/A

Pipeline w/o Caches 6 56.24 7.48 6.65e-7 7.19e-4 1803 3730 18%

Pipeline w/ Caches 6 47.66 1.68 1.77e-7 1.91e-4 4277 10,110 346%

Multicore w/ Single-Thread 6 52.64 1.85 1.76e-7 1.90e-4 8704 21,781 348%

Multicore w/ Multi-Thread 6 52.64 1.14 1.08e-7 1.17e-4 8704 21,781 628%

Table 1: Mapped Design Results w/ Mergesort Test Program
‘

LAT TOTAL EXECUTION TIME(s) Caches Help?

0 1.84e-4 N/A

2 4.26e-4 N/A

6 8.52e-4 N/A

10 1.23e-3 N/A

Table 2: Single-Cycle Processor Specs

LAT TOTAL EXECUTION TIME(s) Caches Help?

0 1.79e-4 N/A

2 3.60e-4 N/A

6 7.19e-4 N/A

10 1.08e-3 N/A

Table 3: Pipeline Processor Specs Without Caches

9



LAT TOTAL EXECUTION TIME(s) Time Difference(s) Caches Help?

0 1.41e-4 N/A N/A

2 1.76e-4 3.5e-5 N/A

6 1.91e-4 1.5e-5 YES

10 2.06e-4 1.5e-5 YES

Table 4: Pipeline Processor Specs With Caches

LAT TOTAL EXECUTION TIME(s) Time Difference(s) Caches Help?

0 1.55e-4 N/A N/A

2 1.72e-4 1.7e-5 N/A

6 1.90e-4 1.8e-5 NO

10 2.09e-4 1.9e-5 NO

Table 5: Multicore Processor Specs for Single-Thread Programs

LAT TOTAL EXECUTION TIME(s) Time Difference(s) Caches Help?

0 7.15e-5 N/A N/A

2 8.85e-5 1.7e-5 N/A

6 1.17e-4 2.9e-5 NO

10 1.44e-4 2.7e-5 NO

Table 6: Multicore Processor Specs for Multi-Thread Programs

We compared 5 processors based off of 7 parameters, at a constant memory latency of

6: synthesis frequency, clocks per instruction(CPI), average latency of one instruction, total

execution time, total number of registers, total logical elements, and speedup. LAT is just

the variance of latency values for the ram to extend how long each instruction takes. Max

frequency is determined by the sweep script that will synthesize our processors against the

mergesort and dual mergesort assembly files. To calculate CPI we will use the command

”make system.sim” to get the testbench clock, however, to get the CPU clock we would

need to divide by 2. Additionally, we will use ”sim -t” to get how many total instructions

are in the mergesort assembly file. Cpi is calculated by dividing the CPU clock by the

total instructions in mergesort. For multicore, we would additionally need to divide by 2 to

account for the two cores. To calculate total execution time we take the inverse of our max

frequency times cpi times the total number of instructions per program which is Iron Law:

TotalExecutionT ime =
sec

cycle
∗ cycles

instr
∗ instr

prog

10



We can calculate latency in turn by dividing our total execution time by total instructions

times the total number of stages/pipes:

Latency =
TotalExecutionT ime

TotalInstructionsInMergesort
∗NumberofStages

We are able to pull the FPGA values like total registers and total logical elements from the

system.summary file that is generated after we synthesize a processor. Finally, we are able

to calculate speedup by taking the old excecution time over the new execution time. We will

base all of our speedup for the other processors against the single-cycle execution time.

The bottom four tables each show every processor’s memory latency, total execution

time, time difference between consecutive latencies, and if caches helped at all. We are only

looking for the first latency the caches help with performance.

4 Conclusion

Finally, it is evident by comparing a pipelined processor with and without caches the major

benefit of utilizing caches. By lowering access latency, a cache helps to minimize the time

needed for memory-related activities including load and store instructions. Under higher

latency settings, such a latency of six cycles, where the CPU with caches has a rather

superior CPI, this benefit is very clear. By means of caches, the processor can rapidly

access instructions or data without stalling for many clock cycles to reach main memory,

therefore greatly enhancing execution efficiency. The average memory access time (AMAT)

equation states that, with stable clock frequency, a lower CPI directly results in improved

performance. Including caches thus not only helps to alleviate memory congestion but also

increases general system performance, particularly in high-latency situations.

Given its capacity to distribute the task between two cores, a multicore CPU clearly

provides superior performance than a pipelined processor with caches. Tasks are spread

among the cores in a multicore system so they may run instructions in parallel, hence lowering

the overall running time for a given workload. Given that the effective workload per core

is halved under ideal conditions, this parallelism greatly increases the average CPI relative

11



to a single-core pipeline with caches. Furthermore, the inclusion of caches in the multicore

architecture lowers memory access latency, thereby allowing each core to process instructions

more effectively and so improves speed. The multicore processor is therefore better than

a single-core pipelined processor with caches since it achieves a compounded performance

benefit from both parallelism and enhanced memory access.

12


