
Accelerated Matrix Processor[AMP00] Memory
Subsystem

William Wong
Purdue SoCET

Purdue University
West Lafayette, United States

wong371@purdue.edu

Varun Vaidyanathan
Purdue SoCET

Purdue University
West Lafayette, United States

vvaidya@purdue.edu

Yue Yin
Purdue SoCET

Purdue University
West Lafayette, United States

yin230@purdue.edu

Abstract—We have designed a memory subsystem for a systolic
array, serving as the central hub for interconnectivity between the
instruction set architecture (ISA), systolic array, and scheduling
subsystems. Our approach involves developing an architecture
that includes an instruction cache (I-cache) for fetching instruc-
tions, a data cache (D-cache) for scalar values, a memory arbiter
to manage data flow, and a scratchpad to house memory banks
and handle outputs to the systolic array. To validate our design,
we will test it using software-controlled main memory, using C++
and utilizing Verilator’s DPI-C interface to connect this main
memory with our Verilog modules. The I-cache and D-cache are
made to be reconfigurable depending on any necessary block
organization. The I-cache will be optimized to handle instruction
retrieval, while the D-cache will be configured to store any scalar
values parsed from the scheduler core. The memory arbiter will
direct the flow of data by giving first the scratchpad, then the
D-cache, and finally the I-cache priority to main memory. This
scratchpad will serve as an intermediary, providing two buses to
transmit matrix inputs and weights into a multiplexer feeding
into the systolic array. The scratchpad is implemented as a split
transaction software-managed cache to be able to handle multiple
requests from different sources simultaneously.

Index Terms—Scratchpad, Caches, Banking, GEMM, Memory.

I. BACKGROUND

Neural networks, a subset of artificial intelligence (AI), have
become more prevalent recently due to rapid advancements in
the field. A neural network is a computer system that replicates
the functions of a human brain such as learning, recognizing,
and problem-solving. An example of an advancement would
be the use of a neural network to recognize and classify
numbers from handwritten digits. However, these operations
are computationally expensive and need specialized hardware
because the process includes performing a large number of
matrix functions. Out of the many available architectures for
artificial intelligence hardware acceleration, a systolic array
is one of the best architectures for matrix tasks because it
exploits data reuse when conducting general-purpose matrix
multiplication (GEMM) operations. These matrices would
need to be stored somewhere because the operation will
consistently reuse previous matrices; otherwise, the system
will constantly be recalculating the matrices that were already
computed previously. The general architecture of the AMP00
will consist of a scheduler core that acts like a datapath to

parse RISC-V instructions and to queue them up, the systolic
array for matrix computations, and the memory subsystem,
which will store results of computations.

II. PROBLEM DEFINITION

One of the main issues with memory in computer archi-
tecture is the cost. If the capacity of memory gets increased,
then the cost of accessing and storing also increases. This
may seem fine at first, but not for AI workloads which
consist of computations that require large transactions at a
fast rate. Additionally, a system would consist of multiple
systolic arrays for AI workloads, causing the cost of memory
transactions to increase exponentially. We would need a design
that will enable us to simulate main memory that is able to
store these matrices needed for AI workloads, as well as,
intermediate modules to handle these memory transactions for
matrices, scalar numbers, and instructions.

III. PROPOSED ARCHITECTURE

To combat this giant cost of using memory for AI hardware
architecture, we propose caches as an intermediary between
the datapath and main memory and a software-controlled
cache as an intermediary between the systolic and main
memory. These intermediaries all exploit the idea of locality
in order to significantly reduce the cost of transactions from/to
main memory. Figure 1 shows an example of an address

Fig. 1. Example of Address Space in Main Memory

space in main memory, each section being separated by a
different color. In this context, each colored slice represents
which parts of the memory a datapath would use during a
certain moment of time. The intermediaries that we create
will exploit two types of localities as described in Figure 2
by knowing the fact that each address space in main memory
will store computations and instructions that are related to each
other. The main idea for exploiting locality is that a datapath



Fig. 2. Locality Examples

would not need to do memory transactions with the entire
main memory causing the system to go through unnecessary
parts of memory instead of the sections we want. Thus, we
will create an I-cache to handle the slices in memory for
instructions, a D-cache to handle the slices in memory for
scalar values, and a scratchpad to handle the slices in memory
where we store the matrices. In addition to the I-cache, D-

Fig. 3. AMP00 Top-Level Diagram

cache, and the scratchpad, we need to create a memory arbiter
to handle which out of the three intermediaries gets access
to main memory because in our initial design for AMP00,
memory accesses are sequential and can’t be accessed by
multiple channels. Our overall top-level diagram can be seen
in Figure 3 where ACIF, SPIF, and CRIF are just arbitrarily
named Verilog interfaces that connect the signals between each
module. Another benefit that comes from these intermediaries
is the placement of these modules. In addition with locality,
by placing the caches closer to the scheduler core and the
scratchpad closer to the systolic array, the memory transactions
will be faster as seen in Figure 4. Although we lose storage

Fig. 4. Memory Hierarchy Diagram

the higher we go up in the hierarchy, that is leveraged by the
fact that the address space in main memory is in chunks and
those benefits were described in the locality example above.

IV. DESIGN CONSTRAINTS AND OPPORTUNITIES

A. Caches and Memory Arbiter

The main constraint for arbitrating the memory accesses
between the scratchpad and caches is the inherent blocking
architecture of our design for the initial iteration of AMP.
Because there isn’t any coherence between the modules, we
can’t access main memory at the same time using multiple
modules. However, what we give up in functionality and
throughput, we make up in convenience and area since we
wouldn’t need a state machine to track coherence and less
registers to store those signals for coherence.

B. Main Memory

The major constraint for memory is that it will be too slow if
we write the memory as a huge register file in system verilog.
The time to simulate and synthesize will be significant. Since
our plan is to synthesize in FPGA before taping out, it would
be impossible to synthesize such a huge main memory in
FPGA. There is not enough transistors in FPGA to do such
a synthesis. So it is an area constraint. Another constraint
we are facing is that the assembler written by the ISA team
is not working so we have to figure a way to generate the
meminit.hex file for the main memory.

C. Scratchpad

One of the most critical constraints in the scratchpad design
is ensuring fast and efficient data transfer to the systolic
array. Since the systolic array takes a large number of cycles
to compute a single matrix multiplication, any fixed-cycle
overhead introduced by the scratchpad must be minimized to
avoid becoming a performance bottleneck.

Each matrix tile processed by the array is a 4×4 block oc-
cupying 32 bytes. To maintain high throughput, the scratchpad



must hold many such tiles simultaneously, enabling quick,
low-latency access to the required data during computation.
This requirement drives the need for a relatively large scratch-
pad size.

To optimize for capacity and access efficiency, the scratch-
pad is implemented as a software-controlled, untagged cache,
effectively functioning as a matrix register file. Unlike
hardware-managed caches, which require tag arrays to track
data validity and location, the software-controlled design
eliminates this overhead. Tag arrays can consume significant
memory, which is especially costly in large SRAM banks. By
removing them, we maximize the amount of SRAM available
for actual matrix data, aligning with the goal of supporting
high-throughput matrix operations.

This approach trades automatic data movement and coher-
ence management for programmer or compiler-level control,
which is acceptable in this context due to the predictable
access patterns of matrix multiplication and the performance-
critical nature of the systolic array.

V. SOLUTION OVERVIEW

A. Instruction Cache

The instruction cache is one of the two caches we have in
our design that sits in between the scheduler core and main
memory. It mainly exploits temporal locality by grabbing the
instruction that was least recently used and storing it inside of
itself using a tagging system. As mentioned above, to utilize
the fast speed of a cache we would want the cache to be
smaller than the main memory, hence the tagging system and
only replacing instructions stored in the I-cache that were least
recently used. If an instruction is found inside of the I-cache,
then grabbing that instruction would be quick. However, when
an instruction is seen for the first time, then it would take the
whole time of grabbing the instruction from main memory
and then grabbing the instruction from the I-cache. It’s best
to remember that in our workload with the systolic array,
matrix operations are looped, and seeing repeat instructions
will overshadow first-time instructions.

B. Data Cache

The instruction cache is the second of the two caches we
have in our design that sits in between the scheduler core and
main memory. It exploits both temporal locality by grabbing
the scalar data that was least recently used and storing it inside
of itself using a tagging system and spatial locality to grab
scalar data that is next to the one we already grabbed. Likewise
with the I-cache, to utilize the fast speed of a cache we would
want the cache to be smaller than the main memory, hence
the tagging system and only replacing instructions stored in
the D-cache that were least recently used. Also, if it is the
first time the D-cache has seen scalar data, it would wait the
whole time of fetching the scalar data from main memory and
then from D-cache to the scheduler core. However, we are
further limiting this occurrence with the addition of spatial
locality because we are leveraging the idea that the instruction

assembly files that we received have stored consecutive scalar
computations next to each other.

C. Memory Arbiter

The memory arbiter’s goal is to limit who gets access to
main memory because we lack any coherence in our design
because of our constraints. The memory arbiter will have a
priority system where it will first give access to scratchpad
operations, then to D-cache operations, and then to I-cache
operations. We would want our priority in this order because
scratchpad operations are the deepest in the instruction pipe
and without this priority, we are faced with a memory dead-
lock, where the next scratchpad requests will constantly have
to wait for any of the caches to finish and potentially never
executing.

D. Scratchpad

The scratchpad memory plays a crucial role in enhancing
performance by providing low-latency, high-bandwidth access
to frequently used data. Unlike traditional cache hierarchies,
scratchpads are software-managed, allowing more determinis-
tic control over data movement. This makes them especially
effective in systolic array architectures, where predictable and
repeated access patterns benefit from fast, localized storage.
Scratchpads provide fast access to matrix tiles which means
that the processor won’t need to access main memory as
often. By minimizing off-chip memory accesses, scratchpads
contribute to improved overall efficiency in neural network
computations. Given that the systolic array requires numerous
cycles to complete a matrix multiplication, it is essential
that the scratchpad provides a steady stream of data without
introducing latency that could bottleneck performance.

The scratchpad is designed as a software-controlled, un-
tagged memory array rather than a traditional hardware-
managed cache. This design choice avoids the need for tag
arrays, which are costly in terms of hardware resources and
SRAM space. By eliminating tag storage, a greater portion of
the available SRAM can be dedicated to actual matrix data,
significantly improving effective storage capacity. Since data
access patterns in matrix operations are known and predictable,
software management of memory placement is both feasible
and efficient in this context.

The scratchpad stores up to 64 4×4 matrix tiles, each
occupying 32 bytes, resulting in a total scratchpad size of 2
KB. These matrices are organized across four banks, with each
bank holding 16 matrices, as shown in Figure 5. This banking
structure allows for up to four simultaneous memory reads,
while also enabling concurrent read and write operations to
support parallel data movement and computation. During a
matrix multiplication instruction, the compute unit may require
up to three matrices simultaneously, for the input, weights,
and partial sums, while a DRAM store operation may require
one additional matrix, making multi-bank access crucial to
avoid contention. These bank accesses are determined by the
programmer which gives them the ability to maximize the
parallelization.



Fig. 5. Scratchpad Architecture Diagram. FSM modules are colored in yellow and FIFO modules are colored in green.

Fig. 6. Scratchpad to Systolic Array Interface

Matrix data is transferred between the scratchpad and the
systolic array row by row. Since each 4×4 matrix consists
of four rows, it takes four cycles to fully send or receive a
matrix. To support this operation efficiently, the architecture
uses two 64-bit buses connecting the scratchpad to the systolic
array. In the common case (when the weight matrix is already
pre-loaded into the systolic array), these buses are used to

send input and partial sum matrices simultaneously. In a less
frequent scenario, both the weight and input matrices may
need to share the same bus. This multiplexing introduces a
minor performance trade-off but results in a significant area
savings, making it a worthwhile optimization in terms of
silicon footprint.

Overall, this scratchpad design balances speed, capacity, and
hardware efficiency, ensuring that the systolic array remains
well-fed with data while maintaining a compact and area-
efficient memory subsystem.

E. Main Memory

Our high level solution for main memory is to use the DPI-
C interface that allows the interchange between Verilog and
C++ to create a C++ file-based main memory and can read
and write from meminit.hex that should be created by the
assembler.

VI. TECHNICAL IMPLEMENTATION DETAILS

A. Cache Organization

The I-cache and D-cache starts out with 1kb in size. The
number of frames is the cache is the cache size divided by



the block size which is a word (32 bits). For a directly-
mapped cache, the number of sets is the same as the number of
frames. For a 2-way set associative cache, the number of sets
is the number of frames divided by the associativity. Now,

CS = Cache Size
A = Associativity
BS = Block Size

Frames (F) =
CS
BS

Sets (N) =
F
A

Address Bits (AB) = 32 bits
Block Offset (BO) = log2(BS)
Index Bits (IB) = log2(N)

Tag Bits (TB) = AB − IB − BO

Fig. 7. Cache Organization Calculations

to parse an address that the scheduler core gives to us we
need to categorize the tag bits, index bits, block offset, and
byte offset for the I-cache and the D-cache. We know that the
dependencies of the caches are from its size and its association.
Using the equations from Figure 7, we are able to make an
I-cache and D-cache suitable for any size.

B. Instruction Cache

Fig. 8. RISC-V I-cache Microarchitecture

Our instruction cache (I-cache) is set up as a one-way,
directly mapped cache because access patterns to instructions
are usually linear and easy to predict. This means that the
processor will get the next few instructions from memory after
this one. This makes it less likely that there will be a cache

conflict. A direct-mapped I-cache has simple indexing and
replacement logic that makes accessing it the fastest possible.
This is important for keeping the pipeline full and maintaining
high instruction flow. Unlike data caches, instruction code is
generally read-only and doesn’t change much while it’s being
executed. This means that performance loss due to conflict or
capacity misses isn’t as likely. So, a 1-way plan for I-cache
is a good compromise between ease of use, speed, and a high
enough hit rate for most workloads.

The flow of how I-cache works is that when the scheduler
core wants to read an instruction, it will first check the cache
instead of going directly to the memory. When the cache sees
imemREN and imemaddr the I-cache knows that the CPU
wants to read instruction from it. It will decode the instruction
address from the scheduler core into tag bits, index bits, block
offset and byte offset. Block offset is used when there are
more than 1 words in each index. By knowing the index bits,
it can go check the valid bit in the cache table to see if that
row is valid or not. If it is valid, and the tag stored in cache
matches the decoded tag, then it will be a cache hit. Cache
hits are processed immediately and will pass the instruction
data by imemload back to the scheduler core and a ihit to
tell the scheduler the data is ready. However, if neither of the
conditions above are matched (invalid bit in that index and tag
doesn’t match), then the I-cache needs to send a request to the
memory arbiter. It will send the read enable signal passed from
the scheduler core to the memory arbiter to tell it that it wants
memory from main memory. Then it will give the memory

Fig. 9. I-cache FSM

arbiter the instruction address to tell the memory arbiter the
address to pull the instruction from. When the data is ready,
the memory will set the iwait bit to low so that the I-cache
knows the data in iload from the memory arbiter is valid and
ready to be stored into the I-cache.

Figure 9 exemplifies the simplicity of the I-cache internal
flow. From the idle state when an instruction request arrives,
we can output the instruction almost immediately from the
same state if it was already in our cache, but if it’s a miss,
then it will take some extra time to go to the miss state, fetch
the instruction from main memory, and come back to idle to
output the instruction to the scheduler core.



C. Data Cache

Fig. 10. RISC-V D-cache Microarchitecture

Our D-cache is a two-way set-associative cache, and it
works faster than a one-way, directly mapped cache because
it has a lot fewer conflict misses. This happens when multiple
memory blocks map to the same cache line and keep pushing
each other out. The two-way design gives higher hit rates
because each block can be kept in one of two lines within a set.
This is especially helpful for our workloads that use loops or
other repetitive access patterns. Multiple tag comparisons and
replacement logic (e.g., LRU) make it a bit more complicated
and slow to access, but it hits a good balance between
performance and cost.

The flow of how D-cache works is when the scheduler core
wants to store or load a scalar value in memory, and likewise,
it will first check if the cache holds that value needed before
pulling from main memory. The two signals that the scheduler
core will send us if they need memory are dmemREN for
reading a value in memory and dmemWEN for writing a value
in memory. The D-cache internal flow is similar to the I-cache

Fig. 11. D-cache FSM

internal flow, but with a few additions. Previously, in Figure 9,

when dealing with a miss, we had to pull in values from
main memory before returning the instruction. Likewise, in
Figure 11, when handling a miss, we would have to pull values
from main memory and store them into the cache first before
returning. An additional feature the D-cache has is having a
dirty bit inside each of its cache frames. The reason for this
is to track the writes the D-cache is doing. Remember that
I-cache is read-only, but D-cache does both reads and writes,
making it destructive. Thus, we would need a state to write
back this dirty data. Also in Figure 11, we need a state to
flush out all of the dirty data left over when the scheduler
core queues a halt because we want our final memory to be
up to date. The reason why the states are doubled up: load1,
writeback1, and write1, is because the D-cache contains two
words of data in a single block as described in our cache
organization above. By having two words, the D-cache takes
advantage of spatial locality and grabs data next to the one
the scheduler core needs.

D. Memory Arbiter

Fig. 12. Old Memory Arbiter FSM

The memory arbiter that we have created is basic in the way
that it doesn’t implement coherence so accesses are sequential
and can’t be parallelized. An example of the flow can be
found in Figure 12, where the priority can clearly be seen by
the control signals leading to spLOAD1 are only dependent
on its own related handshake signal, however, to get into the
iCache state the scratchpad and dcache handshake signals need
to be low. A major problem that arose while implementing
the testbench for the full AMP00 was that the scheduler
immediately release enable signals for the dcache or icache
when a hit signal was released from their respective cache.



This means that there is a chance down the pipe that both
states will have the perfect timing to both request access from
memory at the same time causing one to not load any values
for their cache. A solution to this can be seen in Figure 13,

Fig. 13. New Memory Arbiter FSM

where we can transfer the I-cache and D-cache states to the
Idle state and arbitrate access there combinationally, so one
cache can never access memory at the same time as another.

E. Main Memory

Fig. 14. SystemVerilog DPI test bench for verifying HDL with large datasets,
adapted from [1].

The main memory model for this project is written in C++,
and the DPI-C (Direct Programming Interface for C) connects
it to the SystemVerilog testbench. This setup allows you to
use QuestaSim to simulate memory access quickly while the
design under test (DUT) is being functionally tested. The
memory model reads from a file called meminit.hex that
has already been set up, acts out read and write actions in
memory, and communicates with SystemVerilog through a
shared object file called memory.so.

The first step in memory flow integration is the hex file
generation. The instruction and data memory will be initialized
using a hex file called meminit.hex. This hex file will be
generated from a compiler or assembler targeting our custom
RISC-V 32 instruction set. This custom set is based on the
current RISC-V instruction set plus some custom instructions
used for matrix load and store operations. See details of this
instruction set in the ISA team report.

The next step is the memory model implementation. There
are four functions in memory.cpp, including mem_init,
mem_read, mem_write, and mem_save. The mem_init
function will load the meminit.hex into a std::vector
in C++.

The reason for choosing vector instead of other container
types is because the container choice impacts performance,
memory layout, and access time—important considerations
in a memory model. Using vector implies a sequential
memory with indexed access, which closely resembles how
real memory works. It simplifies simulation of word-addressed
memory with O(1) read/write operations.

A second reason is scalability and flexibility. The vector
container can dynamically grow to adapt to any address range
defined by the hex file, unlike fixed-size arrays. Compared to
the map container, which has O(log n) overhead, vector
provides constant-time access, which is critical in simulations
involving frequent memory access. The vector also con-
sumes less memory in dense address spaces.

The functions mem_read and mem_write handle mem-
ory operations at the specified address. Each function takes
an address and data argument, allowing read or write
access to the simulated memory model. The mem_save
function writes the modified memory contents back to the
meminit.hex file. This final step enables easier debugging
and result comparison by preserving memory state changes
across simulation runs.

All of these functions use the svBitVecVal type from
the svdpi.h header to exchange data between C++ and
SystemVerilog.

The C++ file is compiled into a shared library object file
(memory.so) using the following command:

/package/eda/mg/questa2021.4/questasim/\
gcc-7.4.0-linux_x86_64/bin/g++ -shared -fPIC \
-I/package/eda/mg/questa2021.4/questasim/include \
-o memory.so memory.cpp

In the SystemVerilog testbench, the C++ functions are
imported using DPI-C syntax:
\begin{verbatim}
import "DPI-C" function void mem_init();
import "DPI-C" function void
mem_read (input bit [31:0] address, output bit [31:0] data);
import "DPI-C" function void
mem_write(input bit [31:0] address, input bit [31:0] data);
import "DPI-C" function void mem_save();

The SystemVerilog testbench (example_mem_tb.sv)
calls these functions directly to simulate memory accesses.
Since C++ is not event-driven, all C++ memory functions
return instantly with no simulated delay.

F. Scratchpad

As previously discussed, the scratchpad is implemented as a
2 KB software-controlled memory organized into four banks,
enabling multiple simultaneous read and write operations. This
banking strategy is essential for sustaining high throughput,
especially when multiple matrix tiles need to be accessed
concurrently by the compute units. However, while banking



improves parallelism, it also introduces significant complexity
in arbitrating access to the scratchpad. Managing concur-
rent access across banks, especially under high instruction
throughput, requires careful coordination to avoid conflicts
and stalls. To address this, a set of dedicated FIFOs and
FSMs were implemented in parallel. The FIFOs temporarily
queue incoming read and write requests, while the FSMs
orchestrate the timing and order of these operations based on
bank availability, instruction type, and priority.

This hardware arbitration logic ensures that instructions
arriving from the scheduler core are handled efficiently,
without contention or delays that could compromise system
performance. Most importantly, it guarantees that the systolic
array remains fully utilized, with a continuous stream of
data, thus preventing pipeline stalls due to memory access
latency. By tightly coupling the scratchpad’s access control
with the instruction flow, the architecture achieves both high
data bandwidth and predictable execution timing, which are
critical for performance in matrix-heavy workloads. All of
the following descriptions will reference blocks shown in the
scratchpad architecture diagram in Figure 5.

Before the scratchpad can begin executing operations, it
must first receive instructions from the scheduler core. These
instructions are enqueued into a dedicated instruction FIFO.
This buffering mechanism allows the scratchpad to manage
instruction throughput. The scratchpad supports three primary
instruction types: a matrix load, a matrix store, and a matrix
multiply. A matrix load transfers a matrix tile from main
memory into the scratchpad. A matrix store writes a matrix tile
from the scratchpad back to main memory. A matrix multiply
sends matrix tiles from the scratchpad to the systolic array for
computation.

A key feature of the architecture is that the scratchpad
can handle one instruction of each type in parallel. This
means that a load, store, and matrix multiply can all be in
progress simultaneously, utilizing separate logic paths and in-
dependent resources. This concurrency maximizes throughput
and ensures that no single operation blocks others, thereby
improving overall system performance. Once an instruction
completes, the scratchpad sends a handshake signal back to the
scheduler core. This signal serves as an acknowledgment that
the corresponding instruction type has been processed and that
the FIFO now has space to accept another instruction of the
same type. This handshake mechanism ensures synchroniza-
tion and flow control and prevents the scheduler from sending
dependent instructions at the same time.

There are four identical instances of the Bank Access FSM,
each responsible for managing one of the four scratchpad
banks. These FSMs continuously monitor the instruction FIFO
to detect when a new instruction has been issued. Upon the
arrival of a new instruction, each FSM checks whether the
matrix operand involved is stored in its corresponding bank.
If so, the FSM engages its arbitration logic to schedule access.
The arbitration process ensures that multiple instructions tar-
geting the same bank are serviced in an orderly and conflict-
free manner. Each FSM operates independently but follows

Fig. 15. Bank Access FSM

a uniform arbitration policy, as illustrated in Figure 15. This
figure outlines the decision-making logic used to prioritize and
sequence operations, allowing the scratchpad to maintain high
throughput while ensuring correct and synchronized memory
access across all banks. In the DECODE state, priority is given
to the PSUMLOAD state, which is responsible for loading
the output of the systolic array, stored in the Partial Sum
FIFO, back into the scratchpad. This prioritization ensures
that matrix multiplication operations complete as quickly as
possible, enabling the scratchpad to promptly send a hand-
shake signal back to the scheduler core. By accelerating this,
the design maximizes the utilization of the systolic array and
minimizes stalling. Additionally, once all four Bank Access
FSMs have scanned the current instruction and incremented
the instruction FIFO, the FSMs can proceed to the next
instruction independently, even if one or more FSMs are
still completing operations from the previous instruction. This
decoupled execution model allows multiple instructions to
be in-flight within the scratchpad simultaneously, increasing
instruction-level parallelism and overall throughput.

Matrix register writes, such as storing partial sum outputs
from the systolic array or loading data from DRAM, are
handled directly by the Bank Access FSMs. These write
operations are straightforward because they involve placing
data into the scratchpad’s matrix register banks, with min-
imal control overhead. Read operations, on the other hand,
require more complex handling. These include matrix store
instructions, which read data to be sent back to DRAM,
and matrix multiplication instructions, which read data to be
forwarded to the systolic array. When a read is initiated, the
Bank Access FSM issues the request to the appropriate bank
and appends a set of encoding bits along with it. These bits
carry essential metadata that informs the bank logic about how



to handle the outgoing data. Specifically, the encoding bits
indicate whether the matrix being read is destined for DRAM
or for the systolic array. In addition, if the data is intended for
the systolic array, the bits also identify the matrix type which
distinguishes between weight matrices, input matrices, and
partial sums. This classification ensures that the downstream
logic can correctly interpret the role of the matrix in the
GEMM pipeline.

As a result of this tagging mechanism, the scratchpad
bank logic knows exactly where to route the output row.
Rows meant for DRAM are directed to the DRAM Store
FIFO, while those intended for computation are sent to the
GEMM FIFO. This approach allows for flexible, efficient data
movement and decouples the read process from the instruction
source, enabling high-throughput matrix operations without
unnecessary stalls or ambiguity.

Fig. 16. Input/Weight Bus FSM

For any DRAM store operations, data movement from
the scratchpad to main memory is managed by the DRAM
Store FSM, which functions as a static priority arbiter. This
design is appropriate for the current iteration of the scratchpad
architecture because only one store instruction is allowed to
be in flight at any given time. As a result, there is no need for
dynamic arbitration or complex scheduling mechanisms. The
DRAM Store FSM continuously monitors the DRAM Store
FIFOs, each of which buffers row data originating from the
scratchpad banks. When the FSM detects that data is being
pushed into any of the FIFOs, it begins pulling rows from the
active FIFO. These rows are then sent to the DRAM interface
for writing to main memory.

Finally, for GEMM operations, the GEMM FSM is re-
sponsible for orchestrating the most critical data transfers in
the scratchpad system. This FSM handles the coordination of
matrix data sent to the systolic array, leveraging two dedicated
64-bit buses: one for input and weight matrices, and another

Fig. 17. Partial Sum Bus FSM

for partial sum matrices. Each of these buses is paired with
its own dedicated FSM to arbitrate which matrix rows are
transmitted and when.

Due to the weight-stationary design of the systolic array,
it is essential that weight matrices are preloaded before any
input or partial sum data is sent. To enforce this constraint, the
scheduler core sends a special ”new weight” flag along with
any GEMM instruction that requires a new weight matrix to be
loaded into the array. Upon receiving this flag, the scratchpad
registers a signal indicating that a new weight is being loaded.

This registered signal forces the Partial Sum Bus FSM to
stall, preventing it from sending any partial sum rows to the
systolic array until the weight matrix has been completely
transmitted. Meanwhile, the Input/Weight Bus FSM actively
scans the GEMM FIFOs to determine whether the required
weight matrix is available. If found, it immediately begins
transmitting the weight matrix rows to the systolic array at
maximum throughput. Once all rows of the weight matrix
have been delivered, the “new weight” signal is unregistered,
allowing the Partial Sum Bus FSM to resume operation. This
careful coordination ensures that the systolic array receives its
inputs in the correct order and can begin computation without
error.

It is important to note that this weight-loading protocol is
a relatively rare occurrence, owing to the high reuse factor
of weight matrices in most workloads. In the more common
case, only input and partial sum matrices need to be streamed
into the systolic array. When no new weight is required, both
the Input/Weight and Partial Sum FSMs operate in a round-
robin arbitration mode, checking the FIFOs and dispatching
matrix rows as soon as the bus becomes available. This
arbitration strategy ensures fairness and keeps both buses fully
utilized under typical operating conditions, maintaining high
throughput for the GEMM pipeline.



VII. EVALUATION AND ANALYSIS

A. Caches and Memory Arbiter

We couldn’t get synthesis results for the instruction and data
caches because of time or toolchain issues, but a qualitative
analysis of the design choices gives us an idea of how well they
should work and what the area will be like. The instruction
cache was made to be a direct-mapped cache with little
associativity so that it would be fast and easy to use. This
is because instruction access patterns are usually reliable and
low-latency fetches work best. The data cache, on the other
hand, was made as a 2-way set-associative cache to find a good
mix between hit rate and hardware complexity. This is because
data access patterns aren’t always regular in a direct-mapped
design, which can lead to more conflict misses. Theoretically,
the instruction cache should take up less space and have less
latency, while the data cache should cost a little more but work
better under normal tasks. To be sure of these predictions,
more research with combined data would have to be done.
Overall, both caches are made to be parameterizable so that
future iterations of the AMP can utilize memory load/stores
for instructions and scalar values of any size optimally.

The memory arbiter was heavily focused to load/store
memory from a DPI-C C++ main memory module. In future
AMP iterations with DDR4, DDR5, ETC, simulations the
memory arbiter would need to be replaced with a memory
controller with their respective dram. However, this module is
able to simulate any DRAM, provided timings for loads/stores
are given by a third-party module like Ramulator.

B. Main Memory

After simulate the main memory in QuestaSim, we can see
that the data will come out instantly from the main memory
with no delay. There are three reasons behind that. The first
reason is that C++ is not event-driven like Verilog. Because
in Verilog we can do #delays or @posedge clk to create
some delays. While in C++, unless we want to add a delay
mechanism, all the computation will happen immediately in
zero simulation time. And our goal in this phase is just to use
the main memory to make sure all the parts that will interact
with it (I-cache, D-cache, memory arbiter, and scratchpad)
have the correct functionality, so there is no point in adding
extra delays.

The second reason is that the DPI-C interface does not
advance simulation time. When SystemVerilog calls a C++
function by DPI-C, it will stop the Verilog simulation and
executes the C++ code immediately and resume the simulation
at the same timestamp.

The third reason is that the C++ memory right now are just
returning data from a vector with no modeled wait or access
time.

C. Scratchpad

The scratchpad architecture was designed to ensure that
the systolic array remains fully utilized with minimal stalls
due to memory latency or bandwidth constraints. The final
implementation successfully supports high-throughput matrix

operations by leveraging a software-controlled, untagged, 4-
bank scratchpad architecture with support for parallel reads
and writes. With each bank capable of servicing a matrix read
or write independently, up to four simultaneous accesses can
occur, reducing contention and improving overall bandwidth.
During typical GEMM operations, input and partial sum
matrices are streamed concurrently through two dedicated 64-
bit buses. This dual-bus design ensures that the systolic array
receives a new row every cycle after initialization, keeping
compute resources fully active. During testing, the banked
scratchpad architecture demonstrated significant advantages
in throughput and responsiveness. Additionally, the dual-bus
design performed as expected since the FSMs were able to
juggle the weight pre-loading effectively.

Under standard matrix multiplication workloads the scratch-
pad architecture performed exceptionally well. The ability
to store and reuse weight matrices locally reduced DRAM
bandwidth pressure and allowed the systolic array to remain
fully utilized. However, one notable caveat is that the effec-
tiveness of the scratchpad depends on intelligent bank access
scheduling. Since each bank operates independently, it is up
to the programmer or compiler to ensure that concurrent
instructions are distributed across different banks to avoid
conflicts. When all four banks were utilized effectively, the
scratchpad exhibited strong multitasking capabilities, handling
simultaneous matrix loads, stores, and GEMM operations
with minimal contention. This highlights the importance of
software-awareness in managing data locality and instruction
scheduling, which, when done properly, can unlock the full
performance potential of the banked design.

Despite its strengths, the current design has a few no-
table limitations. First, the static-priority DRAM Store FSM
supports only one in-flight store at a time. While sufficient
for this iteration, this becomes a performance bottleneck
under workloads with frequent output writes, especially if
partial sum reuse is low. Future versions could implement a
multi-instruction store queue and a round-robin or dynamic
arbitration mechanism to address this. In addition to this, the
scratchpad only supports one in-flight load at a time. This
is also bottlenecking the design since the scheduler needs
to schedule up to 3 loads before a GEMM instruction. By
implementing a system to track different loads, the scratchpad
could perform much better.

Additionally, although the software-controlled, untagged
cache structure maximizes SRAM usage, it places a significant
burden on the compiler or runtime system to manage data
movement explicitly. If the compiler decides not to utilize the
banked nature of scratchpad, a large chunk of the scratchpad
remains inactive. The architecture also assumes a weight-
stationary compute model, which simplifies certain optimiza-
tions but also reduces flexibility. For layers or workloads with
rapidly changing weights, the cost of loading new weights
could become more pronounced.

The scratchpad architecture was synthesized using MITLL’s
90nm Silicon-on-Insulator process, achieving a clock fre-
quency of 696 MHz. The final synthesized design occupied



an area of 941,580 µm², making it a compact yet capable
component relative to the scale of the overall system. Power
analysis revealed a total consumption of approximately 386.27
mW, which is reasonable given the high-speed operation
and the support for multiple simultaneous accesses across
four banks. These results validate the scratchpad as a high-
performance and area-efficient memory subsystem, well-suited
for tightly coupled accelerators like systolic arrays, particularly
in compute-intensive matrix multiplication workloads.

VIII. LESSONS LEARNED AND FUTURE WORK

A. Caches and Memory Arbiter

Designing the caches and memory arbiter relied heavily
on the structure of our main memory. Main memory was
an important foundation for this project and more resources
should’ve been allocated to getting main memory working.
Memory arbitration is an interesting concept during this
project because the arbiter relied on the processes and flow
of all the modules. For example, an instruction would pass
through the scheduler core, into the I-cache, and then down
to the arbiter. A matrix would pass through the systolic array,
into scratchpad, and then down to the arbiter. When one a
transaction didn’t output the correct values it was easy to
pinpoint where the flow might’ve failed because the handshake
signals between every module in the AMP00 were so concrete.
We would know if the flow stopped before or after the memory
arbiter.

Some future work are needed for caches. First of all, all the
dpi-c-related code should be removed from the source module
code because they are not synthesizable. So the memory arbiter
shouldn’t directly DPI-C functions like mem-read and mem-
write directly. Instead, these function should be used in the
testbench because we don’t need to synthesize the testbench
anyway. The easy fix to that is replace all the dpi-c functions
with some signal that can be connected to the DUT. The DUT
will input the data read from hex file and output the data to
the hex file. Secondly, even if the caches doesn’t use the DPI-
C functions, they are still not synthesizable for some reason.
Due to the time constraint, they can’t be done when this report
is due.

B. Main Memory

As we mentioned above, right now our main memory
written in C++ has no delay mechanism and is purely a tool
for simulation. There are some more things we can do about it
in the future. The first step is maybe we can add some delays
say 300 ms in C++, to make it look like a real main memory.
The second step is to use Ramulator as a tool to create the
behavior as a real DDR main memory. However, the ramulator
itself doesn’t contain the functionality of storing bits and is
only used for tell the main memory when the memory is ready
(which simulates how DDR main memory works in the real
world). So we need a wrapper and unique config file to use
it, which the Ramulator team is working on it right now and
hopefully will be implemented in AMP01. Also, because of
the area constraints in the FPGA, we need to buy some real

main memory to hold the data if we want to make it taped
out.

C. Scratchpad
Designing the scratchpad memory system brought several

challenges and important insights. One of the main difficul-
ties encountered was managing the complexity introduced
by the multi-banked architecture. While having four inde-
pendent banks significantly boosted performance by enabling
simultaneous access, it also created arbitration and coordina-
tion challenges. Early versions of the system suffered from
over-serialization of independent instructions. These problems
were ultimately resolved by implementing robust, independent
FSMs and using FIFO-based buffering to decouple instruction
flow from memory access. This design allowed operations to
proceed in parallel without bottlenecking the systolic array.

Another key takeaway was the critical role of software-
hardware co-design. Because the scratchpad operates as a
software-controlled, untagged memory, it relies heavily on
the programmer or compiler to manage data placement and
avoid conflicts. This approach reduced hardware complexity
and saved area by eliminating the need for tag arrays, but
it increased the burden on software to ensure correctness
and efficiency. As a result, any future improvements should
include better tooling or compiler support to automate or guide
memory management decisions.

Additionally, we learned that while the DRAM store
path seemed non-critical at first glance, its single-instruction
throughput could become a limiting factor in some workloads.
Similarly, the current design allows only one load instruction
from DRAM to be in flight at a time, which is a performance
bottleneck since multiple loads need to be performed for
each GEMM instruction. Enabling multiple concurrent load
instructions would improve data movement efficiency and
better match the parallel nature of the compute pipeline. In the
same vein, supporting multiple GEMM instructions in flight
could significantly enhance system throughput by ensuring the
systolic array remains continuously fed with data. Currently, if
one GEMM instruction is stalled waiting for a matrix load or
bus arbitration, the entire compute pipeline may idle. Allowing
multiple GEMM instructions to proceed simultaneously would
help hide these latencies and maintain a steady flow of data
into the systolic array.

Looking ahead, future versions of the scratchpad could
benefit from supporting both multiple in-flight load and store
instructions, as well as concurrent GEMM instruction han-
dling. More flexible arbitration schemes and the addition
of lightweight metadata or tags could reduce programming
complexity without incurring the full overhead of a traditional
cache. Furthermore, evaluating how this architecture performs
under more complex workloads is a key direction.

REFERENCES

[1] MathWorks, “Verify HDL Design with Large Dataset Using
SystemVerilog DPI Test Bench,” MathWorks Documentation,
https://www.mathworks.com/help/hdlcoder/ug/verify-hdl-design-with-
large-dataset-using-systemverilog-dpi-test-bench.html. [Accessed: May
3, 2025].


